
Bridging the Gap Between
Morphic Visual Programming and Smalltalk Code

Noury Bouraqadi1 and Serge Stinckwich2

1 Ecole des Mines de Douai, France
bouraqadi@ensm-douai.fr

2 GREYC - Université de Caen, France
Serge.Stinckwich@info.unicaen.fr

Abstract. In this paper, we claim that both prototype-based visual programming and traditional
Smalltalk class-based programming are required for developing applications with a GUI. We introduce
Easy Morphic GUI (EMG), a framework that connects Morphic and EToys visual manipulation and
scripting facilities with the usual Smalltalk development environment tools. The Squeak platform is
used here as a playfield for our experiments. A step-by-step tutorial is used to illustrate the main
aspects of the EMG framework. We also introduce two reuse operators: embed and clone in order
to build new GUIs out of existing ones. embed inserts a GUI into another one, while clone makes
the destination look the same as the original. Static and dynamic version of these operators are also
investigated.
Keywords: Visual Programming, GUI Building, Reuse, Prototype.

1 Introduction

1.1 Context: Squeak and Morphic

Squeak [IKM+97] is a feature-rich, platform-independent and open source implementation
of the Smalltalk programming environment, whose virtual machine is entirely written in
Smalltalk. Squeak includes network and multimedia (sound, graphics, video, ...) support, an
integrated development environment similar to others Smalltalk flavors and a constructivist
learning environment for children called EToys, based on a GUI model named Morphic.

Morphic[Mal02] was invented for the Self [US87] prototype-based programming lan-
guage. Self used to be the successor language to Smalltalk. The Morphic user interface was
developped by Randall Smith and John Maloney. And when John left the Self project,
he ported Morphic to Squeak as a replacement for MVC. Every display object (windows,
menus, ...) in Morphic is a Morph, i.e an instance of a subclass of the class Morph.

Following the Smalltalk philosophy, Morphic objects are uniform: they have the same
basic structure (e.g. color, position, extent) and can be manipulated in the same way.
Because morphs are concrete objects, they can be manipulated visually as real objects.
Each morph can be selected in order to bring up a set of icons, called halos, which allow
visual manipulation (e.g. moving, rotating, resizing, cloning, changing colors or layout).
Being robust, morphs still work after being manipulated, even if impacts their geometric
properties (e.g. rotation or a resizing).

On top of Morphic we find EToys, a powerful scripting visual programming language.
EToys provide an interface where the developer program by dragging and dropping together

II

small snipets of code which directly manipulate visual objects. There is no separation be-
tween the GUI and the model. Hence, EToys open up the opportunity to explore visual
programming but in a rather constrained environment (some programs are difficult if not
impossible to code using EToys mainly because many objects and messages are unavailable
for visual programming). EToys programming share also similarities with event-based pro-
gramming or context-based programming [GNS06], where form and function are usually
merged [Wes02].

EToys can be classified as a direct manipulation interface, a term coined in 1983 by
Ben Schneiderman [Shn83]. That is a human-computer interaction style that allow users
to directly manipulate objects presented to them with actions that resemble to physical
one. The advantages are numerous. The user has at his disposal at a given moment only
the behaviors associated with the object which he handles.

Though interesting, we believe that the power of Morphic and EToys is not fully un-
leashed.

1.2 Motivation

When programming in Squeak, developers are provided two programming interfaces. On
the one hand Morphs can be manipulated and composed visually through halos and dif-
ferent pop-up menus. On the other hand, Browsers allow writing Smalltalk code. However,
when it cames to building software with GUI, developers often code the full GUI as plain
Smalltalk code. This task is cumbersome. Therefore, they lose the benefit of Smalltalk
dynamicity and incremental programming. They have to fully code the GUI description,
then create an instance. For example, if the look or the layout is not appropriated, they
have to delete the GUI instance, change the code and then recreate the instance to check
whether it fits the desired visual properties.

When using Morphic visual capabilities, one can instantiate some morphs and even
compose them. But, the link with code has to be done in an ad hoc manner. No guidelines
are provided. More importantly, the created morph description can not be stored together
with code through for instance change sets or Monticello repositories. Morphic does allow
exporting morphs in files, but the code is not included in those files. Squeak also allows
exporting a whole project through the "image segment" concept. However, the obtained file
contain all objects only accessible from the roots of the image segment. As a consequence,
added classes are often ignored on serialization into image segment.

1.3 Requirements

In this paper, we introduce Easy Morphic GUI3 (EMG) a framework to bridge the gap
between, on the one hand Morphic and EToys visual manipulation and scripting facilities,
and on the other hand “plain” Smalltalk coding activities. Our goal is to integrate more
smoothly the UI design into the incremental style of development of Smalltalk. The key
requirements for this integration are:
3 Freely available at http://csl.ensm-douai.fr/EasyMorphicGUI

III

Use visual programming tools for GUI development. Building interfaces is a rather
boring and time-consuming operation, because they often look similar. By dragging and
dropping existing widgets, it is possible to assemble complex programs in literally sec-
onds rather than by specifying them textually. A lot of commercial development envi-
ronments like VisualBasic or Delphi already exploit this advantage for fast prototyping
applications.

Use Smalltalk powerful development tools for coding business classes. "Turtles all
the way down" is not necessarily a good choice for UI design: not everything should
be implemented visually. Smalltalk already provides very powerful development tools
(class browser, instance inspectors, ...) and we like to stick with these tools in order to
implement domain specific classes.

Save GUIs together with the application code. Smalltalk also provides suitable so-
lutions for code storage and project management, like change sets, Monticello (Squeak).
But usually, preserving the user interface is not that simple. It requires either a tool
that converts UI into code or one that stores code as objects (not the case for Squeak).

Support GUI versioning in order to allow roll backs during the project life-time.
Designing a new UI is an incremental task that need several test and try, before the
final build is obtained.

Provide operators to reuse GUIs. As we already mentioned, interfaces often look the
same. So like domain code that can be reused by subclassing or composing existing
classes, GUIs should be reusable in other contexts than the one where they were first
defined.

In the remainder of this paper we first provide an overview of the EMG framework
(section 2) where we show how EMG does satisfy the four first requirements. EMG features
are illustrated by a step-by-step example. Section 3 describes how EMG satisfies the last
requirement. We present GUI reuse operators and their functioning through some examples.
Next, we present in section 4 work related to EMG. Finally, future works and perspectives
are drawn together with the conclusion in section 5.

2 An Overview of Easy Morphic GUI

The starting point of Easy Morphic GUI (EMG) is that morphs are naturally manipulated
as individual objects while Smalltalk code is mainly class centered. EMG bridges the gap
between those two worlds by mixing prototype-based programming languages concepts
with the class related ones. On the one hand, developers build the GUI as a prototype by
visual manipulations but on the other hand, business code is implemented by coding the
appropriate classes. EMG, as describe below, provides a framework that allows linking the
two parts.

2.1 Description

Essential to the EMG framework is the EMGGuiMorph, the root of the GUI classes hierarchy.
We call GUIs, instances of EMGGuiMorph and its subclasses. GUIs are morphs that act as

IV

containers for other morphs (called sub-morphs) dedicated to human-machine interaction.
Besides, GUIs hold instance variables and methods that allow accessing business objects.
Hence, they act as glue between visual objects (i.e. morphs) and business ones.

Each GUI class has a special instance called prototype4. Instances of a GUI class are
created as copies of the prototype of that class. In order to build a GUI, developers sub-
class EMGGuiMorph and then visually setup the prototype. EMGGuiMorph extends default
Morphic halos with menus that eases the creation of new morphs and their layout. Note
that because we are building the GUI visually, we can use the full power of Morphic and
related libraries such as EToys.

EMG relies on the Mediator design pattern [GHJV95] for connecting visual objects to
business ones. GUIs act as a mediator that encapsulates the interaction between morphs
and business objects. References from morphs to GUIs are set in an interactive way, through
pop-up menus, or if not available using inspectors5. For example, buttons implemented by
morphic developers have a menu to setup the message to be sent on a click. The menu
allow choosing the message receiver among available morphs, and provide the selector and
the arguments. When using EMG, the receiver should be the GUI. Of course, this means
that the GUI class have to implement methods to be called for mediation.

References from business objects to the GUI, often based on the Observer design pat-
tern, are set in the GUI class. This is performed either in the initialize method or through
lazy initialization. Of course business objects can refer to each other directly. Symmet-
rically, morphs belonging to the same GUI can reference each other straightly. However,
references between business objects are set within business classes code, while references
between morphs are set interactively through pop-up menus or inspectors.

2.2 A First Simple Example Step-by-Step

We present here how to build a GUI for a counter using EMG. Our goal is to have a counter
that can be handled through the GUI shown on figure 1. The counter is incremented by
a click on the “+” button and decremented once the “-” button is selected. The text field
both displays the counter’s value and allows editing it.

Fig. 1. The counter GUI

4 The prototype can be accessed through a class instance variable (i.e. an instance variable declared in the
metaclass).

5 Morph the superclass of all morphs is extended with a few facility methods that allow retrieving the GUI to
which a morph belongs.

V

1 Model subc l a s s : #EMGCounter
2 instanceVariableNames : ’ count ’
3 c lassVar iableNames : ’ ’
4 p o o lD i c t i o n a r i e s : ’ ’
5 category : ’ EasyMorphicGUI−Counter Example ’
6
7 EMGCounter >> count
8 ↑ count
9

10 EMGCounter >> count : newValue
11 count := newValue .
12 s e l f changed
13
14 EMGCounter >> i n i t i a l i z e
15 super i n i t i a l i z e .
16 s e l f count : 0
17
18 EMGCounter >> increment
19 s e l f count : s e l f count + 1
20
21 EMGCounter >> decrement
22 s e l f count : s e l f count − 1

Fig. 2. Definition of the counters class

The business code for our example is a trivial counter class. The corresponding code
is provided by figure 2. Nothing special to mention except that the EMGCounter class
inherits from Model. It notifies its dependents when the count instance variable changes
(see line 12). Our goal is to have the GUI be registered as a dependent and be updated
when the counter changes.

Figure 3 provides the definition of EMGCounterGUI, the GUI class for our counter.
We can see that EMGCounterGUI inherits from EMGGuiMorph the support for prototype
management and related operators (see section 2.3 for more details about EMGGuiMorph).
The link to counter is done through an instance variable (line 2) which is set on creation
time.

The counter instance variable setter (lines 10–15) registers the GUI as a dependent of the
counter. Then, it updates the display through the updateDisplaymessage. The updateDisplay
message is part of the EMG API. It is sent by the EMGGuiMorph»update: method in
order to keep the GUI display coherent state with business objects. In our example, the
updateDisplay message ensures that the text field named countText displays the actual value
of the counter. The text field is retrieved using the submorphRecursivelyNamed: message
(see line 25). This message is implemented by the EMGGuiMorph based on the Null Object
Pattern [Woo96]. This pattern allows displaying and testing GUIs in early development
stages. Indeed, since the GUIs are build visually, they are empty when prototypes are
first created. However, a GUI class may contain some references to submorphs using the

VI

1 EMGGuiMorph subc l a s s : #EMGCounterGUI
2 instanceVariableNames : ’ counter ’
3 c lassVar iableNames : ’ ’
4 p o o lD i c t i o n a r i e s : ’ ’
5 category : ’ EasyMorphicGUI−Counter Example ’
6
7 EMGCounterGUI >> counter
8 ↑ counter
9
10 EMGCounterGUI >> counter : newCounter
11 counter i fNo tN i l : [counter removeDependent : s e l f] .
12 counter := newCounter .
13 counter i fNo tN i l : [
14 counter addDependent : s e l f .
15 s e l f updateDisplay]
16
17 EMGCounterGUI >> createCounter
18 ↑EMGCounter new
19
20 EMGCounterGUI >> i n i t i a l i z e
21 super i n i t i a l i z e .
22 s e l f counter : s e l f createCounter
23
24 EMGCounterGUI >> countTextFie ld
25 ↑ s e l f submorphRecursivelyNamed : #countTextFie ld
26
27 EMGCounterGUI >> decrea se
28 s e l f counter decrement
29
30 EMGCounterGUI >> in c r e a s e
31 s e l f counter increment
32
33 EMGCounterGUI >> countFromText : aText
34 | newCount |
35 newCount := aText a sS t r i ng a s In t e g e r .
36 newCount i f N i l : [↑ s e l f] .
37 s e l f counter count : newCount .
38 s e l f f l a s h
39
40 EMGCounterGUI >> updateDisplay
41 super updateDisplay .
42 s e l f countText f i e l d
43 contents : s e l f counter count p r i n tS t r i n g

Fig. 3. Definition of the counter’s GUI class

VII

submorphRecursivelyNamed:message (cf. line 25 of fig 3). If no submorph holds the provided
name, the answer of this message is an object instance of EMGUndefinedMorph. This class
redefines the doesNotUnderstand: method in order to notify the developer that a message
is not understood. Developers can ignore these messages and proceed with the execution.

Class EMGCounterGUI also provides methods for user interaction. Methods increase
(lines 30–31) and decrease (lines 27–28) implement actions to perform when clicking on
buttons. Method countFromText: (lines 33–38) aims at updating the counter when the text
field content is modified. In order to notify the user that the modification is recorded, we
make the counter GUI flashes (line 38).

Now we can build visually the GUI. The following expression allows displaying the
counter’s prototype.

EMGCounterGUI openPrototypeInWorld.

Fig. 4. Morphic halos are extended with menus to build and manage the GUI’s prototype

On creation, the prototype is but an empty rectangle. The missing buttons and text field
can be created from the World menu6 or the “Parts Bin”7 and dropped into the prototype.
Alternatively the GUI morphic halos can be used (see figure 4). We have extended them
with menus helping the construction of GUIs. Besides, we rely on Squeak support for visual
operations undo.

Created morphs have to be setup to finish linking them to business code. We rely for
this on existing morphic capabilities. For example, the name8 of the text morph has to be
set to “countTextField” (Figure 5-a). The label, action selector and target of buttons for
counter incrementing / decrementing can be set through morphic halos menus (Figure 5-b).
Other properties such as colors and layout can be setting in a similar way. Once terminated,
the prototype has to be saved through our extension of morphic menus (Figure 5-c).
6 Sub-menu “new morph...”
7 Parts Bin is a visual repository of existing Morphs that can be opened from the World menu, sub-menu “objects”.
8 Actually, it is the morph’s “external name”.

VIII

(a) (b) (c)

Fig. 5. Setting up morphs for the counter’s GUI

2.3 GUI Prototype Management

As said above, GUIs are built based on a prototype. We rely then on the “Prototype” design
pattern. So, new instances are created by deep-copying the prototype.

The “Prototype” design pattern leaves the developers free about where to store pro-
totypes and how to copy them. In our case, we choose to have prototypes stored at the
class level. The metaclass of EMGGuiMorph does define an instance variable to reference
the prototype. The new method is redefined to use this instance variable and copy the
prototype for creating new instances.

However, referencing the prototype in class instance variables is not enough. Indeed,
the prototype is lost on file outs or when we commit with project management system
like Monticello. To avoid this situation, we introduced a save–restore mechanism accessible
through the prototype’s morphic menu (see Figure 5-c). It does rely on storing a serialized
form of the prototype in a class method. To avoid the literals count limits fixed by the
Smalltalk compiler, the byte array produced by the serialization is compressed and stored as
a string. Therefore, when filing in a GUI class, the prototype can be restored by retrieving
the prototype bytes and deserializing them.

An interesting side effect of this storage solution is GUI automatic version management.
We rely here on Squeak automatic method versioning system to provide GUI developers
with the ability revert back to old versions. This feature together with Morphic undo
support contributes to make GUI development even more comfortable.

3 GUI Reuse

When building interactive software, developers have to deal with at least three concerns:
the business, the GUI and their interactions. The business concern is implemented through
objects such as the counter in our previous example. The GUI concern is implemented
through morphs. Interactions between morphs and business objects reified as mediators
instances of EMGGuiMorph and its subclasses.

IX

Through the business – mediator – GUI decomposition, EMG enables separation of
concerns when building some software. Development can be separated in time and dis-
tributed between different developers. The most appropriate tools can be used for each
part such as visual operations for GUI and browsers for the rest. EMG does also enable
separation of concerns when it come to reuse. Business or mediator classes can be reused
through usual reuse operations, and particularly inheritance. In this section, we focus on
GUI reuse.

3.1 GUI Reuse Operators

Reuse operators allow building new GUIs out of existing ones. Our proposal is based on
two binary operators: embed and clone.

Each one of these operators requires two operands. The first one, called source, is the
GUI to reuse. It remains unchanged once the construction is over. The second operand,
called destination, is the GUI that is being built. Its appearance including the set of
submorphs it contains is changed by the reuse operator. It is important to stress that
the two operands may be instances of unrelated classes. The only constraint is that they
should be GUIs, i.e. their classes should inherit from EMGGuiMorph.

The embed operator inserts the source GUI into the destination. As opposite to clone
which totally changes the destination appearance, the embed operator extends the des-
tination. The only modification of the destination is the addition of the source GUI as
a submorph. Other destination submorphs, its color and its size to name a few, are not
changed. Therefore, if embed is applied several times on the same destination with different
sources, the destination will include all sources.

The clone operator makes an already existing destination GUI have precisely the
same appearance as the source one (e.g. same color, dimension, layout and submorphs9).
If clone is applied several times on the same destination with different sources, the des-
tination GUI will end up with same appearance as the last used source GUI.

We distinguish two variants for the clone operator: static-clone and dynamic-clone.
The static-clone variant does only perform the cloning. The dynamic-clone operator
goes beyond. In addition to cloning, it also sets up a dependency link between source and
destination GUIs. Whenever source appearance evolves, the destination is updated.

We have chosen not to propose a dynamic variant for the embed operator. This decision
is based on the observation that an embedded GUI is often visually adapted to fit with
its container and other morphs. An unsupervised update may break the appearance of
the container. However, developers still can do updates manually through our extension of
morphic halo menus.

For the same reason, we chose to keep by default the prototype–sibling relationship
“static”. New instances of a GUI class are created by cloning the class’s prototype using
the static-clone operator. However, prototypes provide a morphic menu to update all
their siblings. Symmetrically, developers can update a single GUI (through a menu) from
its prototype. They also can also make the GUI become a “dynamic clone” of the prototype.
9 Submorphs are copied.

X

Actually, these operations are not restricted to the prototype of the same class. A GUI can
changed to resemble the prototype of any other class.

3.2 Examples

Reusing the counter GUI with the clone Operator In this example, we show how
we construct a circular counter GUI by cloning it. Figure 6 provide the implementation of
the EMGCircularCounter class. Our goal is to build a simple GUI for circular counters that
has exactly the same appearance and interactions as the GUI for plain counters. Therefore
we simply create a subclass of EMGCounterGUI which uses EMGCircularCounter as shown
in figure 7. Last, we make the prototype of EMGSimpleCircularCounterGUI be a dynamic
clone of the prototype of EMGCounterGUI by mean of a menu. Figure 8-a shows the menu.
The resulting circular counter GUI is presented on figure 8-b. It is worth noting that the
inheritance link between EMGSimpleCircularCounterGUI and EMGCircularCounter, and the
clone link between their prototypes are totally decoupled. A prototype of another class can
be used as a source for the clone operator.

Reusing the counter GUI with the embed Operator In this example, we build
a simple alarm. Its GUI is constructed by embedding two simple circular counters GUI
described in section 3.2. Again we start by implementing business object which correspond
here to the EMGAlarm as shown in figure 9.

Next we implement the gui class EMGAlarmGUI as shown on figure 10. The run method
is performed by a button in the GUI (see figure 12). Besides the business part which is
setting up and starting the alarm, this method also makes some actions on the GUI. The
run button is locked and a colon label blinks until the alarm rings (i.e. when the runmessage
to the alarm returns).

Blinking is not part of label morph’s behavior. We introduced it using EToys to demon-
strate the use of visual programming in EMG and how to link it to the GUI code. Scripts
we implemented for this example are shown on figure 11.

Finally, the alarm GUI prototype is built by embedding instances of EMGSimpleCir-
cularCounterGUI. This operation is performed simply through a drag and drop thanks to
Morphic visual operations (see figure 12-a). The resulting GUI is shown on figure 12-b.

4 Related Work

For building GUIs, many generic and abstract models, were already proposed in the liter-
ature. The main aim of these models is to obtain a better comprehension of the existing
interactive systems, and to define suitable software architectures for the development of
new systems. All models define an interactive system with two components: an inter-
face component and an applicative component. UI models could be classified in five main
classes: linguistics models, interactors models, direct manipulation interfaces and hybrid
approaches.

XI

1 EMGCounter subc l a s s : #EMGCircularCounter
2 instanceVariableNames : ’min max ’
3 c lassVar iableNames : ’ ’
4 p o o lD i c t i o n a r i e s : ’ ’
5 category : ’ EasyMorphicGUI−Counter Example ’
6
7 EMGCircularCounter>>i n i t i a l i z e
8 s e l f min : 0 .
9 s e l f max : 9 .

10 super i n i t i a l i z e
11
12 EMGCircularCounter>>valueInRange : i n t e g e r
13 i n t e g e r > s e l f max
14 i fTrue : [↑ s e l f min] .
15 i n t e g e r < s e l f min
16 i fTrue : [↑ s e l f max] .
17 ↑ i n t e g e r
18
19 EMGCircularCounter>>count : newValue
20 | actualNewValue |
21 actualNewValue := s e l f valueInRange : newValue .
22 super count : actualNewValue
23
24 EMGCircularCounter>>max
25 ↑ max
26
27 EMGCircularCounter>>max : newMax
28 max := newMax
29
30 EMGCircularCounter>>min
31 ↑ min
32
33 EMGCircularCounter>>min : newMin
34 min := newMin
35
36 EMGCircularCounter c l a s s >>min : min max : max
37 ↑ s e l f new
38 min : min ;
39 max : max ;
40 y ou r s e l f

Fig. 6. Implementation of circular counters

XII

1 EMGCounterGUI subc l a s s : #EMGSimpleCircularCounterGUI
2 instanceVariableNames : ’ ’
3 c lassVar iableNames : ’ ’
4 p o o lD i c t i o n a r i e s : ’ ’
5 category : ’ EasyMorphicGUI−Counter Example ’
6
7 EMGSimpleCircularCounterGUI>>createCounter
8 ↑EMGCircularCounter min : 0 max : 9

Fig. 7. Implementation of simple GUIs for circular counters

(a) (b)

Fig. 8. Building circular counter’s GUI by dynamic cloning

Linguistics models [Pfa83] [UIM92] are based on a linguistic approach of the interaction
which identifies three key aspects: 1) lexical aspects indicate all things that can be
assimilated to an input (click, drag and drop) or output (icons) vocabulary. 2) syntaxic
aspects indicate grammars of input representing valid sequences of actions, or the space
and temporal aspects of the display. 3) semantic aspects correspond to the functional
part of the application, which lastly determines the meaning of an action and generates
errors.

Interactors models that carry out the separation of UI concerns in several objects.
MVC (Model View Controller) is the most known and one of the oldest patterns

in UI development. The most influential aspect of this pattern was the clear sepa-
ration between domain objects that model the real world and presentation objects,
seen on the screen. MVC users are encouraged, first of all, to create the model classes
that represent the domain layer in their application. However, though very power-
ful, we find that MVC main drawback is that views are static entities. Developers
manipulate view descriptions (i.e. code) instead of live objects. Therefore interactive
development is difficult if not impossible.

VisualWorks’ Application Model VW provides a variant of MVC. It introduces an
intermediate "application model" between views and models. An application model
consists of a behavior that is required to support the user’s interaction. For example,
the information in the model may represent a selection in a menu, or the contents

XIII

1 Model subc l a s s : #EMGAlarm
2 instanceVariableNames : ’ hour minute ’
3 c lassVar iableNames : ’ ’
4 p o o lD i c t i o n a r i e s : ’ ’
5 category : ’ EasyMorphicGUI−Alarm Example ’
6
7 EMGAlarm>>i n i t i a l i z e
8 super i n i t i a l i z e .
9 s e l f hour : 0 minute : 0

10
11 EMGAlarm>>hour : newHour minute : newMinute
12 hour := newHour .
13 minute := newMinute .
14 s e l f changed
15
16 EMGAlarm>>hour
17 ↑hour
18
19 EMGAlarm>>minute
20 ↑minute
21
22 EMGAlarm>>isTimeToRing
23 | now |
24 now := Time now .
25 ↑now hour = s e l f hour and : [now minute >= s e l f minute]
26
27 EMGAlarm>>r ing
28 AbstractSound stereoBachFugue play
29
30 EMGAlarm>>run
31 | de lay |
32 de lay := Delay forSeconds : 1 .
33 [s e l f isTimeToRing] wh i l eFa l s e : [de lay wait] .
34 s e l f r i ng

Fig. 9. Implementation of alarm

XIV

1 EMGGuiMorph subc l a s s : #EMGAlarmGUI
2 instanceVariableNames : ’ alarm ’
3 c lassVar iableNames : ’ ’
4 p o o lD i c t i o n a r i e s : ’ ’
5 category : ’ EasyMorphicGUI−Alarm Example ’
6
7 EMGAlarmGUI>>i n i t i a l i z e
8 super i n i t i a l i z e .
9 s e l f alarm : EMGAlarm new

10
11 EMGAlarmGUI>>alarm
12 ↑ alarm
13
14 EMGAlarmGUI>>alarm : newAlarm
15 alarm i fNo tN i l : [alarm removeDependent : s e l f] .
16 alarm := newAlarm .
17 alarm i fNo tN i l : [alarm addDependent : s e l f] .
18
19 EMGAlarmGUI>>hourCounter
20 | hourCounterGUI |
21 hourCounterGUI := s e l f submorphRecursivelyNamed : #hourCounter .
22 ↑hourCounterGUI counter
23
24 EMGAlarmGUI>>minuteCounter
25 | minuteCounterGUI |
26 minuteCounterGUI := s e l f submorphRecursivelyNamed : #minuteCounter .
27 ↑minuteCounterGUI counter
28
29 EMGAlarmGUI>>updateDisplay
30 super updateDisplay .
31 s e l f hourCounter count : s e l f alarm hour .
32 s e l f minuteCounter count : s e l f alarm minute
33
34 EMGAlarmGUI>>run
35 | runButton co lonLabe lP layer |
36 s e l f alarm
37 hour : s e l f hourCounter count
38 minute : s e l f minuteCounter count .
39 runButton := (s e l f submorphRecursivelyNamed : #runButton) .
40 runButton lock .
41 co lonLabe lP layer := (s e l f submorphRecursivelyNamed : #co lonLabe l) p laye r .
42 co lonLabe lP layer s t a r tB l i n k i n g .
43 [s e l f alarm run .
44 runButton unlock .
45 co lonLabe lP layer s topBl ink ing .
46] f o rk

Fig. 10. Implementation of alarm’s GUI class

XV

Fig. 11. EToys scripts used for alarm GUI

(a) (b)

Fig. 12. Building circular counter’s GUI by dynamic cloning

XVI

of a paste buffer. Widgets do no more observe domain objects directly, instead they
observe the application model.

MVP (Model-View-Presenter) Dolphin Smalltalk use the MVP pattern, a deriva-
tive of the MVC pattern, first introduced in C++ by Taligent [Pot96]. Its aim is
to provide a cleaner implementation of the Observer connection between Applica-
tion Model and view. In MVP, the Presenter gets some extra power compared to
Controller. Its purpose is to interpret events and perform any sort of logic necessary
to map them to the proper commands to manipulate the model in the intended
fashion. Most of the code dealing with how the user interface works is coded into
the Presenter, making it much like the "Application Model" in the MVC approach.

Direct manipulation interface is a user interface style that was defined by Ben Shnei-
derman [Shn83] whose intention is to allow a user to directly manipulate objects pre-
sented to them, using actions that correspond to the physical world.
Widgets based UI Visual Basic (VB) and other related business frameworks use

a Widget-based architecture. Developers write application specific forms that use
generic controls provided by the framework. The form describes the layout of con-
trols. By means of very simple observer mechanism, the form observes the controls
and handle methods that react to interesting events raised by controls. The form is
usually build with the help of a visual editor. Programming in VB consist of visu-
ally arrange controls components on a form, specify attributes and actions of those
components, and write additional lines of code for adding more functionality. This
is a very similar approach to the Morphic one, but the domain code is inextricably
linked with the interface logic.

Naked Object Pattern With naked objects [Paw04] the domain objects are rendered
visible to the user by means of a completely generic presentation layer. This user
interface is automaticaly generated from an underlying business model definition.
But contrary to Morphic, the emphasis is not on making objects more tangible to
the programmer but rather on making them more tangible to the end-user of the
system.

Fabrik Dan Ingalls’ and Scott Wallace’s Fabrik[Ing88] was one of the first direct ma-
nipulation of objects system in Smalltalk. Fabrik propose a kit of computational and
user-interface components that can be "wired" together to build new components
and useful applications.

Hybrid approaches mix several approaches in an uniform framework.
PAC (Presentation-Abstraction-Control) is another derivative of MVC that di-

vide an UI object into three components [Cou89]: a lexical (presentation), syntactic
(control) and semantic (presentation) components. Interactive components of the
PAC model are based on a linguistic approach of interaction. The control compo-
nent maintains a link between the presentation and abstraction components, but
is also responsible to communicate with sub-UI components as the PAC model is
recursive.

Tweak On the one hand, Morphic is a suitable architecture as far as direct manipula-
tion is involved but support reusability very badly. On the other hand, MVC does’nt

XVII

support direct manipulation. Tweak10 try to combine the best of both worlds. In
Tweak, each graphical object exists in a "dual" representation - as a model like
object (called a "Player") and as view like object (called a "Costume"). Unfortu-
nately, there is no available academic description of Tweak, so it’s a bit difficult to
understand how this integration is done.

5 Conclusion and Future Work

While coding classes does fit well developing applications business code, the development
of GUIs is often cumbersome. The most natural approach is developing GUIs using visual
tools. In this paper we presented Easy Morphic GUI (EMG) a framework that eases building
applications with Morphic GUIs. Thanks to a few design patterns and particularly mediator
and prototype, EMG does bridge the gap between Smalltalk code and Morphic–EToys
visual manipulation and scripting capabilities. Developers have total freedom for building
GUIs in a WYSIWYG, including using some higher level tools such as EToys. EMG does
also introduce a couple of operators that encourage GUI reuse.

Regarding future work, a first one is about the generalization of the EMG framework
to the whole Morphic hierarchy. Our proposal is to refactor Morphic in order to construct
every morph visually. Separation between business – mediator – appearance as introduced
by EMG, combined with GUI reuse operators is likely to improve reuse and modularity.

Better visual tools are also needed for morphs manipulations. So far, not all morph
properties and relationships can be set through clicks and menus. Inspectors and debuggers
are used as an alternative for missing feature. But this solution is not totally satisfactory.

Last, automatic code generation and update can make developers work even more easier.
For example, methods for retrieving submorphs of a GUI can be automatically produced
when embedding a morph into a GUI. Other connections between business objects, the
mediator and GUI morphs can also be generated, making GUI construction with EMG
even more easy.

References

[Cou89] J. Coutaz. Architectural models for interactive software. In Cambridge University Press, editor, European
Conference on Object-oriented Programming, pages 382–399, 1989.

[GHJV95] Erich Gamma, Richard Helem, Ralph Johnson, and John Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GNS06] Markus Gaelli, Oscar Nierstrasz, and Serge Stinckwich. Idioms for composing games with etoys. In
The Fourth International Conference on Creating, Connecting and Collaborating through Computing
(C5 2006). IEEE Computer Society, 2006.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Allan Kay. Back to the future. the story
of squeak, a practical smalltalk written in itself. In Proceedings of OOPSLA’97, pages 318–326, Atlanta,
Georgia, October 1997. ACM.

[Ing88] Dan Ingalls. Fabrik: A visual programming environment. In ACM, editor, OOPSLA’88, 1988.
[Mal02] John Maloney. Squeak: Open Personal Computing and Multimedia, chapter 2 – Introduction to Morphic:

The Squeak User Interface Framework, pages 39–67. Prentice Hall, 2002.

10 http://tweak.impara.de/

XVIII

[Paw04] Richard Pawson. Naked objects. PhD thesis, Department of Computer Science, Trinity College, Dublin,
June 2004.

[Pfa83] G.E. Pfaff, editor. User Interface Management Systems. Springer-Verlag, 1983.
[Pot96] M. Potel. Mvp : Model-view-presenter : the taligent programming model for c++ and java.

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf, 1996.
[Shn83] Ben Shneiderman. Direct manipulation. a step beyond programming languages. IEEE Transactions on

Computers, 16(8):57–69, August 1983.
[UIM92] UIMS. A metamodel for the runtime architecture of an ineractive systems. In ACM, editor, ACM

SIGCHI Bulletin, volume 24, pages 32–37, 1992.
[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. In Proceeding OOPSLA’87, volume 22

of ACM SIGPLAN Notices, pages 227–242, 1987.
[Wes02] Bosse Westerlund. Form is function. In DIS 2002, Serious reflection on designing interactive systems,

pages 117–124, 2002.
[Woo96] Bobby Woolf. The null object pattern. PLOP’96 Writers Workshop, 1996.

